Subsurface Exploration and Geotechnical Engineering Report

Prepared for:

Ridgetop Engineering and Consulting Services
5255 Ronald Reagan Blvd, Suite 210
Johnstown, CO 80534

North Range Storage Tank
Cheyenne, Wyoming

September 21, 2016

18845-HX

Prepared by:

INBERG-MILLER ENGINEERS
350 Parsley Boulevard
Cheyenne, WY 82007
September 21, 2016

Mr. Mike Beach
Ridgetop Engineering and Consulting Services
5255 Ronald Reagan Blvd, Suite 210
Johnstown, CO 80534

RE: SUBSURFACE EXPLORATION AND
GEOTECHNICAL ENGINEERING REPORT
NORTH RANGE STORAGE TANK
CHEYENNE, WYOMING

Dear Mr. Beach:

Enclosed is a PDF copy of our Subsurface Exploration and Geotechnical Engineering report for the above-referenced project. The work described in this report has been completed in accordance with our Amendments 2 and 3 dated June 16, 2016 and June 20, 2016, respectively, to our December 15, 2015 Work or Service Contract.

It has been a pleasure participating in this project. We are available to provide additional services at your request. Services we could provide include:

- additional field exploration
- environmental assessment
- civil engineering
- plan and specification review
- surveying
- construction materials testing
- observation of excavations and earthwork

If you have any questions or comments, please contact us at 307-635-6827.

Sincerely,

INBERG-MILLER ENGINEERS

Derek J. Baker, P.E., P.G.
Vice President

DJB\cno"\IME01\Projects\18845-HX RIDGETOP ENGINEERING North Range Storage Tank\Geotech\18845-HX rpt.docx
TABLE OF CONTENTS

TRANSMITTAL LETTER .. i
TABLE OF CONTENTS ... ii
SUMMARY ... 1
SCOPE OF SERVICES .. 1
PROJECT INFORMATION .. 1
FIELD EXPLORATION .. 1
LABORATORY TESTING PROGRAM ... 2
SITE CONDITIONS .. 2
SUBSOIL CONDITIONS ... 3
GROUNDWATER CONDITIONS ... 3
RECOMMENDATIONS ... 4
 EARTHWORK .. 4
FOUNDATIONS ... 5
 TANK BOTTOM .. 6
 RING WALL .. 6
 ESTIMATED TANK SETTLEMENT ... 7
 LATERAL EARTH PRESSURES ... 7
 GENERAL .. 8
CONSTRUCTION CONSIDERATIONS .. 9
CLOSURE ... 9

APPENDIX A – SITE INFORMATION
 Site Location Map
 Site Observations
 Test Boring Location Plan

APPENDIX B – TEST BORING INFORMATION
 Test Boring Logs
 General Notes
 Classification of Soils for Engineering Purposes

APPENDIX C – LABORATORY TEST RESULTS
 Particle Size Analysis
 Consolidation-Swell Test

APPENDIX D – ADDITIONAL INFORMATION
 Limitations and Use of This Report
 Sample and Data Collection Information
 Important Information About Your Geotechnical Engineering Report
SUMMARY

Based on information obtained from our subsurface exploration and laboratory testing of recovered samples, it is our opinion that the site is suitable for construction of the proposed North Range Storage Tank project, subject to considerations for site preparation and foundations, which are described in this report. Our field exploration included 4 test borings to depths of 26.5 to 76.5 feet. Soils encountered generally include unconsolidated clayey sands and sandy clays in varying combinations and thicknesses overlying weathered to competent sedimentary bedrock. Soils at anticipated shallow foundation depths were generally in a medium dense to dense condition. Groundwater was encountered at a depth of 44 feet below ground surface during drilling operations.

The proposed tank can be supported on a conventional ring wall footing bearing on properly prepared and compacted native subgrades. Footings can be placed on firm, native soil subgrades that have been scarified, moisture conditioned, and compacted as described in the recommendations. In order to reduce total and differential settlement below the tank floor, we recommend that the tank floor be supported on compacted fill equal to the depth of the ring wall footings. Excavated site soils are suitable for use as fill beneath the tank floor.

SCOPE OF SERVICES

The purpose of this study was to explore subsurface conditions at the site of the proposed Cheyenne North Range Storage Tank, and to provide geotechnical recommendations for design and construction. Specific recommendations and information are provided about foundation types, bearing capacity, groundwater conditions, consolidation-swell potential of foundation soils, earthwork, and other pertinent foundation and construction requirements.

PROJECT INFORMATION

Project information was provided by Mike Beach with Ridgetop Engineering and Consulting Services. It is our understanding the project will consist of the construction of one water storage tank and a control building. The tank will be 110 feet in diameter and 45 feet tall.

Detailed information on the structural loads was not available at the time this report was prepared. However, based on information provided, we assume that the tank will have wall loads on the order of 2 to 3 kips per linear foot. We anticipate tank floor loads will be approximately 2,800 psf. Some recommendations provided in this report will not be appropriate for tanks with loads in excess of those described above.

Grading plans were not provided to us at the time this report was prepared. We assume that some minor grading will be required and cut and fill depths will be less than 3 feet. If cuts and fills significantly in excess of these assumptions are planned, we should be provided plans and the recommendations of this report should be reviewed for conformance with the planned site configuration.

FIELD EXPLORATION

The fieldwork was performed using a CME 85 truck-mounted drilling rig at the site August 29-30, 2016. Four test borings were advanced to depths of 26.5 to 76.5 feet. Drilling was performed using 3.25-inch inside diameter, hollow-stem augers. The augers act as a continuously advancing, steel casing.
method prevents test holes from caving in above the levels to be tested. Sampling tools are lowered inside the hollow-stem for testing into undisturbed soils.

Drilling and field sampling were performed according to the following standard specifications:

2. Sampling with a 2-inch O.D., split-barrel (split-spoon) sampler per ASTM D1586, “Penetration Test and Split-Barrel Sampling of Soils.” Thirty-five such tests were performed. Standard penetration test blow counts were obtained by driving a 2.0-inch-diameter split-spoon sampler into the soil using an automatic hammer that drops a 140-pound hammer a distance of 30 inches. The SPT N-value is the blow count for 12 inches of sampler penetration. N-values are correlated to soil relative density, hardness, strength and a variety of other parameters.

3. Sampling with a 2.5-inch I.D., thick-wall, ring-lined, split-barrel, drive sampler per ASTM D3550. Seven such samples were obtained.

The soil samples were field classified by the geological engineer, sealed in containers to prevent loss of moisture, and returned to our laboratory. A field log was prepared for each boring during drilling. The borings were located in the field by use of handheld GPS with coordinates. Test boring elevations were interpolated from the topographic map with 1-foot contour intervals. The topographic map of the site was prepared and provided by Ridgetop Engineering and Consulting Services.

LABORATORY TESTING PROGRAM

Upon return to the office, samples were classified visually in accordance with ASTM D2488. In order to better classify the recovered samples and determine their engineering properties, the following laboratory soil tests were performed:

<table>
<thead>
<tr>
<th>TESTS</th>
<th>PURPOSE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Moisture Content (ASTM D2216)</td>
<td>41</td>
</tr>
<tr>
<td>2.</td>
<td>Atterberg Limits (ASTM D4318)</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Sieve Analysis (#4 to #200) (ASTM C136 and C117)</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Water Soluble Sulfate</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>Consolidation-Swell Test (ASTM D2435)</td>
<td>2</td>
</tr>
</tbody>
</table>

A final log for each boring was prepared containing the work method, samples recovered, and a description of soils encountered. The sieve analyses and consolidation-swell tests are presented graphically in Appendix C. All other test results are arrayed on the final logs bound into Appendix B.

SITE CONDITIONS

The site is located south of Happy Jack Road, and directly west of the existing Microsoft Data Center in Cheyenne, Wyoming. The topography at the site slopes down to the west, with approximately 4 feet of relief from the northeast down to the southwest. A site location map, site observation sheet, and test boring location plan in Appendix A describe the site in more detail.
SUBSOIL CONDITIONS

The subsoil classified in the 4 test borings performed at the site generally consists of unconsolidated sand, gravelly sand, and clayey sands in varying quality, particle size and thicknesses, overlying weathered to competent sedimentary bedrock.

The topsoil consists of 0 to 0.2 feet of silty, fine to medium sand. The organic content of the soils appears to be relatively low. Standard Penetration Test Blow counts (N-Values) indicate that the soils are in a very loose to medium dense condition.

Over the approximate interval of 0.2 feet to approximately 40 feet, overburden generally consisting of sand, gravelly sand, and clayey sand in varying relative percentages and thicknesses were encountered. Laboratory testing indicates minus number 200 sieve fractions of 12 percent to 38 percent and plasticity indexes of 0 to 17 percent indicating non plastic to medium plasticity. Standard Penetration Test blow counts (N-values) indicate that the soil has medium dense to very dense relative density.

Soils become increasingly denser and more cemented with depth. Below depths of approximately 40 feet, soils are slightly to moderately cemented. This layer is probably weathered Ogallala Formation sedimentary bedrock. However, the material properties of this transitional soil-bedrock layer are more similar to soil than to rock, and for the purpose of this report can be considered as dense to very dense soil. One test borings were terminated in the Ogallala Formation. The surface of the bedrock is not distinct due to apparent weathering and a zone of residual soil derived from the bedrock that has formed at the lower portion of the unconsolidated overburden. Sedimentary bedrock has moderate to high strength and low compressibility.

Consolidation-swell tests are summarized in the following table. Testing was performed on relatively undisturbed, drive-tube samples using one-dimensional test equipment. Samples were placed into the equipment at native moisture content and loaded to a nominal vertical confining pressure of 1,000 psf prior to wetting. Following wetting, the vertical confining pressure was increased incrementally to a maximum vertical pressure of 32,000 psf and then reduced incrementally to determine a rebound curve.

<table>
<thead>
<tr>
<th>SAMPLE TEST RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Description</td>
</tr>
<tr>
<td>Light Brown silty fine SAND</td>
</tr>
<tr>
<td>Brown silty CLAY</td>
</tr>
</tbody>
</table>

GROUNDWATER CONDITIONS

Groundwater was encountered at a depth of 44 feet below ground surface during drilling operations. Groundwater observations were made in each test boring at the completion of drilling and again prior to completion of the fieldwork. This information, along with cave-in depths of the drill holes, is recorded on the final logs in Appendix B. Test borings were backfilled at the completion of the fieldwork for practical and safety reasons. Therefore, no subsequent readings were performed. Due to the short amount of time the boreholes were left open, the observed groundwater depths likely do not represent static groundwater levels, and should be evaluated accordingly.
Groundwater conditions could change with seasonal or long-term changes in climatic conditions and post-construction changes in irrigation and surface water runoff. Generally, developed sites have a significantly greater volume of water available to percolate into the ground due to storm water runoff from hard surfaces. Localized, perched groundwater tables may develop above clay layers or within the foundation backfill zone.

RECOMMENDATIONS

EARTHWORK

1. Prior to construction on the site, all vegetation and organic surface matter should be stripped from the surface. Based on the test borings, and on-going earthwork operations, it appears that little to no additional stripping will be required.

2. Demolition of existing structures and utilities (if any) must include complete removal of below grade piping, concrete and old fill.

3. After excavation to desired site grades (including any overexcavation required), and prior to placing fill or erection of forms for foundations and slabs, we recommend the site surface be compacted. This compaction densifies the native subgrade and soils loosened by excavation. This compaction effort should be performed in the presence of the Geotechnical Engineer so that soft or loose zones can be properly identified and improved. Alternatively, the Geotechnical Engineer can observe proof rolling with a heavily-loaded wheeled vehicle. If loose or soft zones are encountered that do not improve with repeated compaction, they should be removed and replaced with properly compacted, approved fill, as described in Item 5 below.

4. Fill material requirements are provided in the following table:

<table>
<thead>
<tr>
<th>Use</th>
<th>Fill Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beneath structures</td>
<td>Structural fill meeting Envelope A</td>
</tr>
<tr>
<td>Trench backfill</td>
<td>Structural fill meeting Envelope A</td>
</tr>
<tr>
<td>General site fill in landscaped areas</td>
<td>Native clayey fine to coarse sand</td>
</tr>
</tbody>
</table>

Native and fill soils should be free of debris and particles larger than 6 inches in diameter.

5. Imported fill specifications are provided below:

<table>
<thead>
<tr>
<th>Structural Fill Envelope A</th>
<th>WYDOT Grading W Crushed Aggregate Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve</td>
<td>Percent Finer</td>
</tr>
<tr>
<td>1½”</td>
<td>100</td>
</tr>
<tr>
<td>#4</td>
<td>50-100</td>
</tr>
<tr>
<td>#8</td>
<td>30-90</td>
</tr>
<tr>
<td>#30</td>
<td>15-75</td>
</tr>
<tr>
<td>#50</td>
<td>10-60</td>
</tr>
<tr>
<td>#200</td>
<td>0-20</td>
</tr>
</tbody>
</table>

Liquid Limit < 40, PI < 15 Liquid Limit < 25, PI < 3
6. Engineered fill should be placed in horizontal lifts not exceeding 8 inches in loose thickness and compacted at moisture contents ranging from 4 percent below to 2 percent above the optimum moisture content. The contractor’s equipment and procedures should produce a uniformly mixed and compacted lift. In-place density and water content of each lift of fill materials should be tested and approved.

The following table is our recommended soil compaction requirement for earthwork. All compaction requirements are based on Standard Proctor maximum dry density (ASTM D698).

<table>
<thead>
<tr>
<th>Native Subgrade</th>
<th>Fill Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarified and compacted subgrade soils beneath footings, tank bottom, and structural fill</td>
<td>Beneath foundations 95</td>
</tr>
<tr>
<td></td>
<td>Tank bottom 95</td>
</tr>
<tr>
<td></td>
<td>Embankments and backfill in non-structural areas 90</td>
</tr>
</tbody>
</table>

7. If construction takes place during cold weather, care should be taken to prevent construction on frozen soils. In addition, fill materials should not contain snow and/or ice and should not be placed in a frozen condition.

FOUNDATIONS

CONTROL BUILDING

The proposed structures can be supported on conventional continuous and spread footings bearing on well-prepared native soil. Site soils are generally in a medium dense to dense condition and are considered adequate for support of shallow foundations.

1. Continuous strip or individual pad (spread) footings should bear on moisture conditioned, compacted, and tested, native, site soil. Compaction should be performed as described in the Earthwork section above.

2. Spread footings for building columns and continuous footings for bearing walls should be designed for an allowable net bearing pressure of 2,000 psf.

 • Shallow footing widths should be a minimum of 24 inches for individual pads and 18 inches for continuous footings.
 • The allowable net bearing pressure can be increased by one-third for short-term loads such as wind or seismic.
 • The above allowable bearing pressure is to be used with foundation reactions from dead and long-term live loads derived by working stress analyses.
 • “Net” bearing pressure is the difference in vertical pressure on an element of soil, at the bottom of the footing, between its pre-excavation condition and its completed project condition (including all live and dead structural loads). Generally the weight of below-grade foundation concrete and below-grade fill are not considered a net structural load.
because the densities of these materials are similar to the density of the original soil they displace. Where site grades change between the time of foundation excavation and project completion, the weight of fill soil and/or excavated soil may need to be accounted for as part of the “net bearing capacity”.

3. For frost protection and to provide containment for the bearing soils, exterior footings should extend to a minimum depth of 36 inches below finished exterior grade. Interior footings within heated areas of the building should extend to a minimum depth of 12 inches below the floor subgrade.

4. If footings are designed and constructed as recommended in this report, total foundations settlements of up to 1.0 inch is anticipated. Differential settlement across the building pad is anticipated to be less than half of the total. Settlement is often induced by saturation of the foundation subgrade. Therefore, provisions for adequate surface drainage should be made. Where differential settlement may be problematic, consideration should be given to design footing dimensions and loads to produce equal settlement. This effort may include considerations of compressibility of native soil, thickness and compressibility of fill, and distribution of dead load. Foundations supported on new fills greater than about 3 feet may experience additional settlement due to settlement of the new fill and the weight of the fill on the subgrade soils.

5. Footing subgrades should be observed by the Geotechnical Engineer prior to concrete placement, to identify suitable bearing materials, and to observe whether the foundation soils have been properly prepared prior to foundation construction. All loose or soft soils in the footing excavation should be removed from the foundation excavation prior to concrete placement. Footings should not be placed on either uncompacted native soil or uncompacted fill.

TANK BOTTOM
The tank bottom can be supported on the existing site soils and/or properly compacted fill consisting of site sand and gravel or imported fill meeting the specifications of Envelope A described in the earthwork section. Prior to erection of the tank, any topsoil and/or vegetation should be stripped, the surface should scarified and moisture conditioned to a minimum depth of 8 inches, and the soil should be compacted. An environmental liner such as a plastic membrane or a geosynthetic clay liner can be placed above the compacted soil subgrade. Environmental liners, if utilized, will have subgrade requirements for maximum particle size and surface preparation. The liner manufacturer’s installation requirements should be consulted for specific subgrade requirements. A bedding layer of sand can be used beneath the tank bottom if desired.

RING WALL
The tank walls may be supported on a concrete ring wall. Conventional design of the ring wall provides for a ring wall bearing pressure approximately equal to the vertical stress imposed by the tank at the same depth, approximately 2,800 psf in this case. This design concept is intended to have the wall settle approximately the same amount as the adjacent soil beneath the tank. Typically, ring-walls are more
susceptible to variations in shallow soil bearing conditions than the tank base. This condition may be managed by compacting the ring-wall foundation soils uniformly.

Footing subgrades should be observed by the geotechnical engineer prior to concrete placement, to identify suitable bearing materials, and to observe whether the foundation soils have been properly prepared prior to foundation construction. All loose or soft soils in the footing excavation should be removed from the foundation excavation prior to concrete placement. Footings should not be placed on either uncompacted native soil or uncompacted fill. Subgrades disturbed during foundation excavation should be compacted as described in the earthwork section above.

ESTIMATED TANK SETTLEMENT
Based on the site soil and groundwater conditions and anticipated loads, we anticipate that total settlements on the order of up to 3 inches and differential settlement on the order of 0.5 to 1 inch may be anticipated for the proposed tank.

LATERAL EARTH PRESSURES
1. Lateral load parameters are provided in the following table. All of the parameters assume the structure and soils are above the water table. The following parameters do not include a factor of safety. A minimum factor of safety of 2.0 is recommended for horizontal loading.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Native fine to coarse SAND</th>
<th>Grading A Fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Lateral Soil Pressure – for structures that can deflect without restraint by other structures. (equivalent fluid unit weight, pcf)</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>At-Rest Lateral Soil Pressure - for structures which have significant restraint against deflection. (equivalent fluid unit weight, pcf)</td>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td>Passive Lateral Soil Pressure – resistance of soil abutting a structure. (equivalent fluid unit weight, pcf)</td>
<td>425</td>
<td>400</td>
</tr>
<tr>
<td>Coefficient of Friction between foundation and underlying soil</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Soil Density, wet soil (pcf)</td>
<td>125</td>
<td>135</td>
</tr>
</tbody>
</table>

2. Where possible, foundations should be backfilled and compacted evenly on all sides to prevent horizontal movement. Foundation walls should be adequately braced prior to backfilling. Fill placed against retaining walls or basement walls should be carefully compacted with appropriate equipment to prevent excessive lateral pressures, which may displace or damage the structure.

3. Surcharge loads, on the uphill side of the wall, due to ground slope, soil stockpiles, equipment, and structures may significantly increase lateral forces on the wall and need to be fully evaluated.
4. Drains should be installed behind retaining walls or other confined areas where surface precipitation and runoff water can collect. Drains should be designed to prevent the build-up of hydrostatic pressures behind the retaining structures due to trapped water.

GENERAL

1. The measured water-soluble sulfate content of 0-50 ppm for samples from Test Boring B-2 at a depth of 5 feet and from Test Boring B-4 at a depth of 2.5 feet indicates that the soils do not contain sufficient sulfates to be very reactive with cement. According to American Concrete Institute (ACI) and Portland Cement Association (PCA) guidelines, no special provisions for cement type or water/cementitious material ratio are required for sulfate resistance of portland cement concrete.

 Concrete mixes should be designed to resist alkali silica reactions (ASR). ASR is a serious problem in the Cheyenne area due to local aggregates which adversely react with portland cement. The ASR reaction results in formation of a gel within the concrete, which absorbs moisture and expands. The expansion of the gel results in severe cracking of concrete exposed to moisture. ASR is normally mitigated by Cheyenne concrete producers by replacing local coarse aggregate with non-reactive aggregates and/or blending Class F Fly Ash or a lithium compound with portland cement. Concrete mixes should meet the requirements of the City of Cheyenne Public Works Standards (August 2003).

2. Rainwater discharge from the tank roof, parking, and drive areas should be directed toward collection points and disposed of away from the tank in an adequate and efficient manner.

3. In order to promote drainage away from the tank, we recommend that final exterior grades slope away from the building at a slope of 5 percent for a minimum distance of 10 feet.

4. In accordance with the International Building Code (IBC), 2003 Edition, Table 1615.1.1, we recommend site Class D for determination of design spectral response acceleration parameters per IBC. This class is based on Standard Penetration Resistance blow count numbers (N-values) per ASTM D1586 and the assumption that the subsurface soil conditions encountered in the test borings can be projected deeper into the earth to describe the average soil conditions for the top 100 feet. Class D describes the average soil properties of the top 100 feet as stiff silt and clay (15 < Standard Penetration Test blow count N < 50 and 1,000 psf < undrained shear strength < 2,000 psf).

5. Inberg-Miller Engineers should review final plans and specifications in order to determine whether the intent of our recommendations has been properly implemented. In addition, we should be retained as the geotechnical engineer and construction materials testing agency to provide the following services:

 a) Observe excavations to determine if subsurface conditions revealed are consistent with those discovered in the exploration.

 b) Identify if the proper bearing stratum is exposed at proposed foundation excavation depths.
c) Observe that foundation excavations are properly prepared, cleaned, and dewatered prior to concrete placement.

d) Test compaction of subgrades and fills.

e) Perform field and laboratory testing of concrete and other materials as required by project specification and/or building code.

CONSTRUCTION CONSIDERATIONS

No major difficulties are anticipated for conventional equipment during earthwork construction at the proposed site. We do not anticipate that groundwater will be encountered at the proposed foundation depths during construction. However, excavations should be protected from surface water run-off, whenever possible. Water accumulation within excavations should be promptly removed. If excavation bottoms become wet, excavation of soils beyond the minimum required depth may be necessary to provide a firm base for fill placement.

Excavations should be sloped, benched, shored, or made safe for entry by use of trench boxes as required by the standards of 29 CFR Part 1926. As a safety measure, it is recommended that all vehicles and soil piles be kept a minimum lateral distance equal to the slope height, from the crest of the slope. The contractor is solely responsible for designing and constructing stable excavations. Furthermore, the contractor’s “responsible person” should continuously evaluate the soil exposed in the excavations, the geometry of the excavation slopes, and the protective equipment and procedures employed by his forces. For the sole purpose of project planning, we recommend that sand and clayey sand soils to approximate depths of up to 30 feet be considered an OSHA Type C soil. Excavations, including utility trenches, extending to depths of greater than 20 feet are required to have side slopes, trench boxes, or shoring designed by a professional engineer.

CLOSURE

This report has been prepared for the exclusive use of our client, Ridgetop Engineering and Consulting Services, for evaluation of the site, design, and construction planning purposes of the described project. All information referenced in the Table of Contents, as well as any future written documents that address comments or questions regarding this report, constitute the “entire report”. Inberg-Miller Engineers’ conclusions, opinions, and recommendations are based on the entire report. This report may contain insufficient information for applications other than those herein described. Our scope of services was specifically designed for and limited to the specific purpose of providing geotechnical recommendations for the design of the proposed North Range Storage Tank project. Consequently, this report may contain insufficient information for applications other than those herein described.

We appreciate participating in your project. We can offer services under a separate contract to provide civil or environment engineering services, review final plans and specifications, perform construction surveying, field and laboratory construction materials testing, and observe excavations, as may be required. Please call us at 307-635-6827 if you have any questions regarding this report.
Site Location Map

Source: Google Earth
Site Observations

1. **Site Latitude/Longitude:** 41.126340°, -104.906809°
2. **City/Town:** Cheyenne, WY
3. **Slope of Ground Surface:** Approximately 1-2%
4. **Downhill Direction:** West
5. **Est. Change of Surface Elevation:** 4 feet
6. **Bodies of Water Nearby:** None
7. **Topsoil Type:** Silty, fine SAND
8. **Vegetation:** Native grass
9. **Rock Outcrops:** None
10. **Est. Depth to Bedrock:** > 45 feet
11. **Artificial Fills:** None
12. **Type and Depth:** N/A
13. **Nearby Land Features:** None
14. **Present Site Improvements:** Electrical Substation to the north
15. **Buried Utilities On Site:** None
16. **Nearby Buildings:** None
17. **Cond. of Nearby Foundations:** N/A
18. **Cond. of Nearby Streets/Walks:** N/A
19. **Buried Obstructions Encountered:** None
20. **History of Land Use:** Undeveloped land adjacent to electrical substation
21. **Existing Drainage Features:** Site grades
22. **Overhead Utilities Crossing Site:** None
23. **Geologic Description of Site:** Unconsolidated sand, silt, and clay overlying sedimentary bedrock
Test Boring Location Plan

Test Boring B-1 through B-4
by Inberg-Miller Engineers on August 29-30, 2016
Map Source: Google Earth
TEST BORING B-1

Project: North Range Storage Tank
Location: Cheyenne, Wyoming
41.12634°, -104.90705°
Job No.: 18845-HX
Client: Ridgetop Engineering & Consulting Services

<table>
<thead>
<tr>
<th>ELEVATION (Ft)</th>
<th>DEPTH (Ft)</th>
<th>SOIL DESCRIPTION</th>
<th>N BLOWS</th>
<th>% GRAVEL</th>
<th>% SAND</th>
<th>% 200</th>
<th>WATER CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>TOPSOIL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SW-SM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium dense to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>very dense, dry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LL = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to moist, light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PL = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>brown, GRAVELLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PI = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>15.0</td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>Very dense, moist</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>light brown,</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>CLAYEY SAND</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.5</td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.5</td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Grades to moist at 2.5'

Coarse gravel and small cobbles brought to surface

Remarks:

Date Begun: 8/29/16
Date Completed: 8/29/16
Termination Depth (ft): 26.5
Crew: IO BWH TGF
Rig: CME-85
Method: 4 1/4" Hollow Stem Auger
Benchmark/Datum (Ft):

SAMPLE TYPES
- Standard Penetration Test
- Drive Sampler, 2.41-I.D.

WATER LEVEL OBSERVATIONS
- While Drilling (ft)
- End of Drilling (ft)

Depth to Cave In (Ft): 22.0
SOIL DESCRIPTION

- **TOPSOIL**: Medium dense to dense, dry, light brown, GRAVELY SAND
- **Medium dense, moist, light brown, SAND**: 7.5 ft
- **Very dense, moist, light brown, CLAYEY SAND, (with gravel)**: 16.0 ft
- **Dense to very dense, moist, light brown, SILTY SAND**: 20.0 ft
- **Dense, moist, light brown, silty SAND (weathered sandstone bedrock)**: 40.0 ft
- **Dense to very dense, dry, light brown, GRAVELY SAND**: 40.5 ft
- **Medium dense, moist, light brown, SAND**: 50.0 ft
- **Very dense, moist, light brown, CLAYEY SAND, (with gravel)**: 59.0 ft
- **Dense to very dense, moist, light brown, SILTY SAND**: 61.0 ft

WATER CONTENT

- W.S.S. < 50 ppm

SAMPLE TYPES

- Standard Penetration Test
- Drive Sampler, 2.41-I.D.

WATER LEVEL OBSERVATIONS

- While Drilling (ft): 55.0
- End of Drilling (ft): 44.0
- Depth to Cave In (ft): 67.0

NOTES

- **Benchmark/Datum (Ft):**
- **Date Begun:** 8/30/16
- **Date Completed:** 8/30/16
- **Termination Depth (ft):** 76.5
- **Crew:** IO BWH TGF
- **Rig:** CME-85
- **Method:** 4 1/4" Hollow Stem Auger

PROJECT: North Range Storage Tank
LOCATION: Cheyenne, Wyoming
41.12635°, -104.90683°

JOB NO.: 18845-HX
CLIENT: Ridgetop Engineering & Consulting Services
Soil Description

<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>Depth (ft)</th>
<th>Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>TOPSOIL, medium dense, dry, light brown, GRAVELLY SAND</td>
</tr>
<tr>
<td>15.0</td>
<td>15.0</td>
<td>Medium dense, moist, light brown, CLAYEY SAND, (with gravel)</td>
</tr>
<tr>
<td>25.0</td>
<td>25.0</td>
<td>Very dense, moist, light brown, CLAYEY SAND</td>
</tr>
</tbody>
</table>

Water Content

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% -200</th>
<th>% -200</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Standard Penetration Test

- **N BLOWS PER FT:**
 - 0: 30
 - 50: 20
 - 100: 10

Water Level Observations

- **Dry:**
 - Depth to Cave In (ft): 21.5

Other Tests and Notes

- **SAMPLE TYPES:**
 - Standard Penetration Test
 - Drive Sampler, 2.41-I.D.

- **WATER LEVEL OBSERVATIONS:**
 - While Drilling (ft): Dry
 - End of Drilling (ft): Dry
TEST BORING B-4

Project: North Range Storage Tank
Location: Cheyenne, Wyoming
Job No.: 18845-HX
Client: Ridgetop Engineering & Consulting Services

Soil Description

<table>
<thead>
<tr>
<th>Elevation (Ft)</th>
<th>Soil Description</th>
<th>N Blows</th>
<th>Water Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TOPSOIL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>Medium dense, dry, light brown, GRAVELLY SAND</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Very loose to dense, moist, light brown to pale yellow, SAND</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>15.0</td>
<td>Dense, moist, light brown, CLAYEY SAND, (with gravel)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>20.0</td>
<td>Medium dense, moist, light brown to brown, SILTY SAND</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>26.5</td>
<td></td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>

Remarks:

- W.S.S. < 50 ppm
- large gravel to cobbles encountered

Logs:

- Standard Penetration Test
- While Drilling (ft): Dry
- End of Drilling (ft): Dry

Sampling:

- Surface Elevation: 41.1263°, -104.90648°

Additional Details:

- **Date Begun:** 8/30/16
- **Date Completed:** 8/30/16
- **Termination Depth (ft):** 26.5
- **Crew:** IO BWH TGF
- **Rig:** CME-85
- **Method:** 4 1/4" Hollow Stem Auger
- **Benchmark/Datum (Ft):**
GENERAL NOTES - LOG OF TEST BORING/TEST PIT

DESCRIPTIVE SOIL CLASSIFICATION

<table>
<thead>
<tr>
<th>Soil Fraction</th>
<th>Particle Size</th>
<th>U.S. Standard Sieve Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulders</td>
<td>Larger than 12”</td>
<td>Larger than 12”</td>
</tr>
<tr>
<td>Cobbles</td>
<td>3” to 12”</td>
<td>3” to 12”</td>
</tr>
<tr>
<td>Gravel: Coarse</td>
<td>3/4” to 3”</td>
<td>3/4” to 3”</td>
</tr>
<tr>
<td>Fine</td>
<td>4.76mm to ¾”</td>
<td>#4 to ¾”</td>
</tr>
<tr>
<td>Sand: Coarse</td>
<td>2.00mm to 4.76mm</td>
<td>#10 to #4</td>
</tr>
<tr>
<td>Medium</td>
<td>0.42mm to 2.00mm</td>
<td>#40 to #10</td>
</tr>
<tr>
<td>Fine</td>
<td>0.074mm to 0.42mm</td>
<td>#200 to #40</td>
</tr>
<tr>
<td>Silt</td>
<td>0.005mm to 0.074mm</td>
<td>Smaller than #200</td>
</tr>
<tr>
<td>Clay</td>
<td>Smaller than 0.005mm</td>
<td>Smaller than #200</td>
</tr>
</tbody>
</table>

Plasticity characteristics differentiate between silt and clay.

<table>
<thead>
<tr>
<th>Relative Density</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>"N" Value*</td>
</tr>
<tr>
<td>Very Loose</td>
<td>0-4</td>
</tr>
<tr>
<td>Loose</td>
<td>4-10</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>10-30</td>
</tr>
<tr>
<td>Dense</td>
<td>30-50</td>
</tr>
<tr>
<td>Very Dense</td>
<td>Over 50</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: The penetration number, N, is the summation of blows required to effect two successive 6” penetrations of the 2” split-barrel sampler. The sampler is driven with a 140-pound weight falling 30”, and is seated to a depth of 6” before commencing the standard penetration test.

DESCRIPTIVE ROCK CLASSIFICATION

Engineering Hardness Description of Rock

Very Soft: Can be carved with a knife. Can be excavated readily with point of pick. Pieces one inch or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail.

Soft: Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure.

Medium Soft: Can be grooved or gouged 1/16-inch deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1-inch-maximum size by hard blows of the point of a geologist’s pick.

Medium Hard: Can be scratched with knife or pick. Gouges or grooves to ¾-inch deep. Can be excavated by hard blow of a geologist’s pick. Hand specimens can be detached by moderate blow.

Hard: Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand specimen.

Very Hard: Cannot be scratched with knife or sharp pick. Breaking of hand specimens requires several hard blows of geologist’s pick.

NOMENCLATURE

Drilling and Sampling

SS	Split Barrel (spoon) Sampler
N	Standard Penetration Test Number, blows/foot*
ST	Thin-walled Tube (Shelby Tube) Sampler
DC	Thick-wall, ring lined, drive sampler
C	Coring
DP	Direct Push Sampler
CS	Continuous Sampler (used in conjunction with hollow stem auger drilling)
D	Disturbed Sample (auger cuttings, air/wash rotary cuttings, backhoe, shovel, etc.)

Laboratory Tests

USCS	Unified Soil Classification System (soil type)
W	Water Content (%)
LL	Liquid Limit (%)
PL	Plastic Limit (%)
PI	Plasticity Index (LL-PL) (%)
q_u	Unconfined Strength, TSF
q_p	Penetrometer Reading (estimate of unconfined strength), TSF
y_m	Moist Unit Weight, PCF
y_d	Dry Unit Weight, PCF
WSS	Water Soluble Sulfate (%)
Φ	Angle of Internal Friction (degrees)
c	Soil Cohesion, TSF
SG	Specific gravity of soil solids
S	Degree of Saturation (%)
e	Void Ratio
n	Porosity
k	Permeability (cm/sec)
▼	Water Level at Time Shown

Note: Water level measurements shown on the boring logs represent conditions at the time indicated, and may not reflect static levels, especially in cohesive soils. The available water level information is given at the bottom of each log.
Classification of Soils for Engineering Purposes

ASTM Designation: D2487-69 and D2488-69
(Unified Soil Classification System)

<table>
<thead>
<tr>
<th>Major Divisions</th>
<th>Group Symbols</th>
<th>Typical Names</th>
<th>Laboratory Classification Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse-Grained Soils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(More than half of material is larger than No. 200 sieve size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravels</td>
<td>GW</td>
<td>Well graded gravels, gravel-sand mixtures, little or no fines</td>
<td>$C_i = \frac{D_{95}}{D_1}$ greater than 4; $C_i = \frac{(D_{95})^2}{D_1D_6}$ between 1 & 3</td>
</tr>
<tr>
<td></td>
<td>GP</td>
<td>Poorly Graded gravels, gravel-sand mixtures, little or no fines</td>
<td>Not meeting all gradation requirements for GW</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>Gravels w/ Fines (A)</td>
<td>Atterberg limits below “A” line or P.I. less than 4</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Silty gravels, gravel-sand-silt mixtures</td>
<td>Above “A” line with P.I. between 4 and 7 are borderline cases requiring use of dual symbols</td>
</tr>
<tr>
<td></td>
<td>u</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GC</td>
<td>Clayey gravels, gravel-sand-clay mixtures</td>
<td>Atterberg limits below “A” line or P.I. greater than 7</td>
</tr>
<tr>
<td>Sands</td>
<td>SW</td>
<td>Well-graded sands, gravelly sands, little or no fines</td>
<td>Not meeting all gradation requirements for SW</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>Poorly graded sands, gravelly sands, little or no fines</td>
<td>Atterberg limits above “A” line or P.I. less than 4</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>Sands w/ Fines (A)</td>
<td>Limits plotting in hatched zone with P.I. between 4 and 7 are borderline cases requiring use of dual symbols</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Silty sands, sand-silt mixtures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>u</td>
<td>Clayey sands, sand-clay mixtures</td>
<td></td>
</tr>
<tr>
<td>Fine-Grained Soils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(More than half material is smaller than No. 200 sieve size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silts and Clays</td>
<td>ML</td>
<td>Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL</td>
<td>Inorganic clays of low to medium plasticity, gravelly, clays, sandy clays, silty clays, lean clays</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OL</td>
<td>Organic silts and organic silty clays of low plasticity</td>
<td></td>
</tr>
<tr>
<td>Silts and Clays</td>
<td>MH</td>
<td>Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>Inorganic clays of high plasticity, fat clays</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>Organic clays of medium to high plasticity, organic silts</td>
<td></td>
</tr>
<tr>
<td>Highly Organic Soils</td>
<td>P</td>
<td>Peat and other highly organic soils</td>
<td></td>
</tr>
</tbody>
</table>

Division of GM and SM groups into subdivision of d and u are for roads and airfields only. Subdivision is based on Atterberg limits; suffix d used when L.L. is 28 or less and the P.I. is 6 or less; the suffix u used when L.L. is greater than 28.

Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.
PARTICLE SIZE ANALYSES

COBBLES GRAVEL SAND SILT OR CLAY

<table>
<thead>
<tr>
<th>Specimen Identification</th>
<th>Classification</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>Cc</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>● B-1</td>
<td>7.5 WELL-GRANTED SAND with SILT and GRAVEL(SW-SM)</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>1.26</td>
<td>85.71</td>
</tr>
<tr>
<td>▲ B-2</td>
<td>30.0 CLAYEY SAND(SC)</td>
<td>32</td>
<td>15</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▲ B-3</td>
<td>25.0 WELL-GRADED SAND with SILT and GRAVEL(SW-SM)</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>1.67</td>
<td>20.87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen Identification</th>
<th>D100</th>
<th>D60</th>
<th>D30</th>
<th>D10</th>
<th>%Gravel</th>
<th>%Sand</th>
<th>%Silt</th>
<th>%Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>● B-1</td>
<td>7.5</td>
<td>25</td>
<td>4.994</td>
<td>0.605</td>
<td>41.1</td>
<td>46.9</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>▲ B-2</td>
<td>30.0</td>
<td>4.75</td>
<td>0.111</td>
<td>0.0</td>
<td>0.0</td>
<td>62.3</td>
<td>37.7</td>
<td></td>
</tr>
<tr>
<td>▲ B-3</td>
<td>25.0</td>
<td>25</td>
<td>1.77</td>
<td>0.501</td>
<td>20.0</td>
<td>71.1</td>
<td>8.9</td>
<td></td>
</tr>
</tbody>
</table>

PROJECT: North Range Storage Tank
JOB NO.: 18845-HX
CLIENT: Ridgetop Engineering & Consulting Services
TEST METHOD: ASTM D422

INBERG-MILLER ENGINEERS
CONSOLIDATION-SWELL TEST
ASTM D2435

Project: North Range Storage Tank
Job No: 18845-HX
Sample No: B-2

Client: Ridgetop Engineering & Consulting
Test Date: 9/6/2016
Depth (ft): 20

Soil Description: Light brown, silty SAND

<table>
<thead>
<tr>
<th>Specimen Diameter: 2.41 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen Height: 1.00 in.</td>
</tr>
<tr>
<td>Overburden Pressure (Po): 2398 psf</td>
</tr>
<tr>
<td>Preconsolidation Pressure (Pp): 2398 psf</td>
</tr>
<tr>
<td>Overconsolidation Ratio: (OCR = pp/po) 1.0</td>
</tr>
</tbody>
</table>

Liquid Limit (%): |
Plastic Limit (%): |
Plasticity Index (%): |

Initial Final
Moisture Content: 19.6% 20.4% |
Saturation: 78% 103% |
Wet Density (pcf): 119.9 132.1 |
Dry Density (pcf): 100.3 109.7 |

Swell Pressure: N/A psf
Percent Swell or Collapse*: -0.04% (- indicates collapse) |
Pressure when wetted: 1000 psf

INBERG-MILLER ENGINEERS
Soil Description: Light brown, clayey SAND
 Specimen Diameter: 2.41 in.
 Specimen Height: 1.00 in.
 Liquid Limit (%): Overburden Pressure (Po): 2502 psf
 Plastic Limit (%): Preconsolidation Pressure (Pp): 2502 psf
 Plasticity Index (%): Overconsolidation Ratio: (OCR = pp/po) 1.0
 In initial
 Moisture Content: 19.0% -358.9% Comp. Index (Cc): 0.091
 Saturation: 85% -400% Consol. Index (Cr): 0.027
 Wet Density (pcf): 125.1 -127.5
 Dry Density (pcf): 105.1 49.2
 Swell Pressure: N/A psf
 Percent Swell or Collapse*: 0.01% (- indicates collapse) Pressure when wetted: 1000 psf

INBERG-MILLER ENGINEERS
LIMITATIONS AND USE OF THIS REPORT

This report has been prepared by Inberg-Miller Engineers, hereinafter referred to as "IME", to evaluate this property for the intended use described herein. If any changes of the facility are planned with respect to the design vertical position or horizontal location as outlined herein, we recommend that the changes be reviewed, and the conclusions and recommendations of this report be modified in writing by IME.

The analyses and recommendations submitted in this report are our opinions based on the data obtained, and subsurface conditions noted from the field exploration. The locations of the exploration are illustrated on the accompanying map and diagram. Any variations that may occur between, beyond, or below the depths of test borings or test pits, are not presented in this report because these areas were not specifically explored. Excavations during the construction phases may reveal variations from subsurface conditions identified in our exploration. The nature and extent of such variations may not become evident until excavation and construction begins. If variations appear evident during construction, we advise a re-evaluation of the recommendations in this report. After performing additional on-site observations, we can provide an addendum to our recommendations noting the characteristics of any variations.

IME is responsible for the conclusions and opinions contained in this report based on the supplied data relative only to the specific project and location outlined in this report. If conclusions or recommendations are made by others, IME should be given an opportunity to review and comment on such conclusions or recommendations in writing, prior to the completion of the project design phase.

It is recommended that IME be provided the opportunity to review final designs, plans, and specifications using the conclusions of this report, in order to determine whether any change in concept may have any effect on the validity of the recommendations contained in this document. If IME is accorded the privilege of this review, IME can assist in avoiding misinterpretation or misapplication of these recommendations if changes have been made as compared with IME’s understanding of either the project or design content. Review of the final design, plans, and specifications will be noted in writing by IME upon client's request, and will become a part of this report.

Standards are referenced by designated letters/numbers in several locations within this report. These standards were identified for the sole purpose of informing the reader what test methods were followed by IME during the execution of IME’s scope of services. Anyone who reads, references, or relies on this report for any purpose whatsoever is hereby advised that IME has applied professional judgment in determining the extent to which IME complied with any given standard identified in this report or any other instrument of IME’s professional service. Unless otherwise indicated, such compliance referred to as “general compliance,” specifically excluded consideration of any standard listed as a reference in the text of those standards IME has cited. Questions about general compliance – i.e., which elements of a cited standard were followed and to what extent, should be directed to IME.

IME has performed exploration, laboratory, and engineering services sufficient to provide geotechnical information that is adequate for either the preliminary planning or the design phase of the project, as
stated herein. IME’s scope of services was developed and agreed to specifically for this purpose. Consequently, this report may be insufficient for other purposes. For example, this report may be insufficient for the contractor or his subcontractors to prepare an accurate bid for the construction phase of the project. The client, owner, potential contractors, and subcontractors are advised that it is specifically the contractor’s and subcontractor’s obligation and responsibility during the bidding process to collect whatever additional information they deem necessary to prepare an accurate bid. The contractor’s and subcontractor’s bid should include selection of personnel, equipment, bits, etc. that are necessary to complete the project according to the project specifications, on schedule, within budget, and without change orders resulting from unforeseen geologic conditions.

Variations in soil conditions may be encountered during construction. To permit correlation between soil data in this report and the actual soil conditions encountered during construction, we recommend that IME be retained to perform construction observations of the earthwork and foundation phases of the work. It is recommended that IME be retained to observe all areas where fills are to be placed, and test and approve each class of fill material to be used according to the recommendations for compacted fill presented in this report. IME can provide specific assistance in evaluating construction compliance with the design concepts, specifications, or recommendations if IME has been retained to perform continuous on-site observations and materials testing during construction.

The presence of IME’s field representative, if such services are requested by the client, will be for the sole purpose of providing record observations and field materials testing. We recommend the contractor be solely responsible for supervision, management, or direction of the actual work of the contractor, his employees, or agents. The contractor for this project should be so advised. The contractor should also be informed that neither the presence of our field representative or the observation and testing by our firm shall excuse him in any way for defects discovered in his work. It is understood that IME will not be responsible for job or site safety on this project.

This report has been prepared in accordance with generally accepted geotechnical engineering practices, and makes no warranties, either expressed or implied. The services performed by IME in preparing this report have been conducted in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. No other representation, express or implied, and no warranty or guarantee is included or intended in this report. The report has not been prepared for other uses or parties other than those specifically named, or for uses or applications other than those enumerated herein. The report may contain insufficient or inaccurate information for other purposes, applications, building sites, or other uses.
SAMPLE AND DATA COLLECTION INFORMATION

Field-sampling techniques were employed in this exploration to obtain the data presented in the Final Logs and Report generally in accordance with ASTM D420, D1452, D1586 (where applicable), and D1587 (where applicable).

The drilling method utilized in most test borings is a dry-process, machine rotary auger type that advances hollow steel pipe surrounded by attached steel auger flights in 5-foot lengths. This method creates a continuously cased test hole that prevents the boring from caving in above each level of substrata to be tested. Sampling tools were lowered inside the hollow shaft for testing in the undisturbed soils below the lead auger. In some test borings, as appropriate to advance to the desired depth, air or wash rotary drilling methods were utilized. Air or wash rotary drilling methods allow for the extraction of rock core samples.

Samples were brought to the surface, examined by an IME field representative, and sealed in containers (or sealed in the tubes) to prevent a significant loss of moisture. They were returned to our laboratory for final classification per ASTM D2487 methods. Some samples were subjected to field or laboratory tests as described in the text of this report.

Groundwater observations were made with cloth-tape measurements in the open drill holes by IME field personnel at the times and dates stated on the Final Logs. Recorded groundwater levels may not reflect equilibrium groundwater conditions due to relatively low permeability of some soils. It must also be noted that fluctuations may occur in the groundwater level due to variations in precipitation, temperature, nearby site improvements, nearby drainage features, underdrainage, wells, severity of winter frosts, overburden weights, and the permeability of the subsoil. Because variations may be expected, final designs and construction planning should allow for the need to temporarily or permanently dewater excavations or subsoil.

A Final Log of each test pit or boring was prepared by IME. Each Final Log contains IME’s interpretation of field conditions or changes in substrata between recovered samples based on the field data received, along with the laboratory test data obtained following the field work or on subsequent site observations. The final logs were prepared by assembling and analyzing field and laboratory data. Therefore, the Final Logs contain both factual and interpretive information. IME’s opinions are based on the Final Logs.

The Final Logs list boring methods, sampling methods, approximate depths sampled, amounts of recovery in sampling tools (where applicable), indications of the presence of subsoil types, and groundwater observations and measurements. Results of some laboratory tests are arrayed on the Final Logs at the appropriate depths below grade. The horizontal lines on the Final Logs designate the interface between successive layers (strata) and represent approximate boundaries. The transition between strata may be gradual.

We caution that the Final Logs alone do not constitute the report, and as such they should not be excerpted from the other appendix exhibits or from any of the written text. Without the written report, it is possible to misinterpret the meaning of the information reported on the Final Logs. If the report is
reproduced for reference purposes, the entire numbered report and appendix exhibits should be bound together as a separate document, or as a section of a specification booklet, including all drawings, maps, etc.

Pocket penetration tests taken in the field, or on samples examined in the laboratory are listed on the Final Logs in a column marked “qp”. These tests were performed only to approximate unconfined strength and consistency when making comparisons between successive layers of cohesive soil. It is not recommended that the listed values be used to determine allowable bearing capacities. Bearing capacities of soil is determined by IME using test methods as described in the text of the report.
Important Information about Your Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. And no one—not even you—should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical-engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical-Engineering Report Is Based on a Unique Set of Project-Specific Factors

Geotechnical engineers consider many unique, project-specific factors when establishing the scope of a study. Typical factors include: the client’s goals, objectives, and risk-management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you;
- not prepared for your project;
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical-engineering report include those that affect:

- the function of the proposed structure, as when it’s changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, always inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

Subsurface Conditions Can Change

A geotechnical-engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical-engineering report whose adequacy may have been affected by: the passage of time, by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, droughts, earthquakes, or groundwater fluctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report’s Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. Those recommendations are not final, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual
subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report’s recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical-engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical-engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical-engineering report, but prepare it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled “limitations,” many of these provisions indicate where geotechnical engineers’ responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical-engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else.

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold-prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, many mold-prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical-engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold-prevention consultant, none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely on Your GBA-Member Geotechnical Engineer for Additional Assistance

Membership in the Geoprophessional Business Association exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your GBA-member geotechnical engineer for more information.